手机浏览器扫描二维码访问
而先前那段话当中的所谓“非平凡嵌入”一词,则是指莱因哈特基数本身,其实就是那基本嵌入的临界点。
至于这临界点用数学语言表述,便是……κ是嵌入j的临界点,即对于所有小于κ的序数α,有j(α)=α,但j(κ)≠κ。
然后,这种嵌入会将集合论的全类V映射到其自身,且并非恒等映射——即存在某个集合x继而使得j(x)≠x。
同时,由于嵌入j具有临界点κ,这也就意味着对于所有小于κ的序数α,都会有j(α)=α,而对于κ本身,则会有j(κ)>κ。
若细化来说,便是这种嵌入会具有特定的性质,其会将V中的某些元素映射到V中的其他元素,且映射过程中会保持集合的某些结构或性质不变。
其次,由于无法被一阶逻辑语言来描述或定义,所以莱因哈特基数亦具备了不可定义性。
还有,除却这些之外,那真正导致了莱因哈特基数会拥有“0=1”这一名头性质,便是它与那存在有选择公理的标准集合论公理系统ZFC之间的不一致性。
亦可称,库能不一致定理。
此定理的内容,便是在带有选择公理的集合论体系中,不存在一个可将全类V映射到自身的非平凡基本嵌入。
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
若细致讲来,即是在ZFC系统的整体框架内,不存在可以满足莱因哈特基数定义条件的基数,其必须要在没有选择公理的集合论体系(比如ZF系统)之中才能够成立以及讨论。
之所以如此,却又是因为莱因哈特基数的定义会涉及非平凡的基本嵌入。
根据库能不一致定理,这种嵌入在ZFC公理系统中根本无法成立,或者说会导严重的不一致性,继而催生出种种与已知数学事实相矛盾的结论。
另外除却这一定理,还有其他一些数学结果和推理也表明莱因哈特基数与选择公理在逻辑上压根无法共存,这些反例也进一步支持了两者的不兼容性。
于是,在一个自相矛盾的公理系统(莱因哈特基数+ZFC)当中,自然什么乱七八糟的命题都可以给出迫真证明。
譬如……0=1。
故此,莱因哈特基数才无奈的拥有了所谓“0=1”这种标签名号。
事实上,不仅仅莱因哈特基数会与选择公理,与ZFC公理系统相互矛盾无法兼容。
在其之上那一致性强度更为庞大的伯克利基数、超级莱因哈特基数、无界闭伯克利基数,乃至更更庞大也更更遥远的种种已知未知大基数也是如此。
而会出现这种种矛盾的进一步本质原因,却是因为选择公理的加入,为集合论提供了太多太多的“选择”自由度。
对于这一难题,要么接受ZF+莱茵哈特基数存在公理,不要选择公理;要么接受ZF+选择公理,不要莱茵哈特基数存在公理;要么……建立一个比ZFC更强大的公理系统。
这个扩展升级之后的更高阶公理系统,或许可以包含允许莱茵哈特基数存在的某些额外公理,继而可以容许莱茵哈特基数以及在它之上那更强大基数的成立与存在。
“所以那个所谓的全知高塔……”
翻尽了皮特天王所有记忆的穆苍,悠悠转首“看”向那空茫绝无的失却狭渊,似在“看”向那不知坐落于何方的全知高塔,幽幽道:
“会不会就是一座……可以容纳莱茵哈特基数逻辑构型存在的,更高阶公理系统呢?”
苏自坚被调到偏僻乡镇当粮库管理员,却从一名老道士那里获得传承,不仅学的无上医术,更拥有了强悍的体魄!一次车祸中,他意外救下女领导得到赏识,于是从最基层开始起步,在官场之中左右逢源,步步青云,终于踏上人生巅峰!...
大学生张青山,被打成瞎子,开除学籍,回归乡里,却得到奇异传承,从此咸鱼翻身,治病救人,种田养殖,带领村民发家致富,顺便跟小姐姐谈谈情说说爱...
先校园后都市破镜重圆1夏鸢蝶走出大山那年,刚满17岁。她提着破旧的行李箱,穿着洗得发白的牛仔裤,扎着土丑土丑的双蝎尾辫,迈进了资助人那个像公主城堡一样的家里。富贵迷人眼。但夏鸢蝶不看。她只想考个...
官场失意,情场便得意,逛街都能捡着大美女,岂料此美女竟...
2002年有三件大事,第一件是上海获得了世界博览会的举办权,第二件事是事业单位机构改革,第三件事是陆渐红失恋了。...
胡莱先生,当今足坛像您这样只会进球的前锋生存空间越来越狭窄但尽管如此,您还是取得了耀眼的成就,请问您的成功秘诀是什么呢?在一个冬日的午后,胡莱向来自全世界的记者们展示他刚刚获得的至高荣誉,有记者向他提出了这样的问题。面对记者们投来的目光,胡莱的思绪却回到了中学时的那个下午,他孤独的站在球场旁边看其他同学踢比...