手机浏览器扫描二维码访问
“当然,如果对于这篇证明论文有什么问题,各位可以在后续的提问环节中进行提出,我将竭尽所能进行解答。”
将报告会的主题重点突出出来,这是每一个有水平的学术报告人都会做的事情。
毕竟大家的时间都很珍贵,来参加报告会并不是看报告者拿着PPT重复念那些论文上已有的东西的。
而在学术报告会开始之前预习报告者的论文,也是学术界的惯例和一种必要的礼节。
大家来到这里,是为了学习和弄懂那些自己不懂的知识的。
那些在论文上已经写的很清楚的验证过程等东西,就没有必要再在报告会上说一次了。
一百多页的证明论文,如果要事无详细的全都过一遍的话,没有大几天的时间恐怕是做不到的。
而且对于大部分参加报告会的人,比如跟随教授一起来涨见识的学生,亦或者主动来参与报告会的教授来说,他们是过来见证历史的。
几个小时的报告会还行,但一场持续几天的报告会,恐怕大部分的人都没有这个耐心。
翻过一页PPT,徐川进入了这次报告会主题。
“代数簇与群映射工具是证明霍奇猜想的核心数学工具,如果想要理解霍奇猜想的证明过程,那么就必须对它有足够的了解。”
“这种数学方法起源于Weyl群的映射和扭转,其核心思想是通过Weyl群对代数簇的映射,而后通过引入Bruhat分解和域论.”
跟随着他的讲解,PPT上的图片不断放映着。
“.设Gz=GLn,C为一般复线性群,且B∈Gz为一上三角子群,那么,GzBruhat分解为双培集分解BG1B=∏BωB。Weyl群W是N*N变换矩阵的线性同构。”
“.酉群Un的一个最大环T:={diagd,d2,…,dn:|dj|=1则子群GUn的双培集分解为TG1T=∏BωB。”
“.”
在证明霍奇猜想的整篇论文中,毫无疑问,这种代数簇与群映射工具是最重要最精髓的东西。
它建立在米尔扎哈尼教授提出代数群、子群和环面架构法基础上,但又脱胎换骨,可以说完全脱离了原有的基础和架构,成为了一种全新的数学方法。
而对于一种全新的数学工具,数学界的接受能力向来都是比较谨慎的。
所以在今天的报告会上,徐川对这份工具进行了着重讲解。
一方面是为了让更多的数学家进行了解。
另一方面,则是为了接下来的霍奇猜想的证明过程的报告。
毕竟如果代数簇与群映射工具没弄明白的话,后续的霍奇猜想的证明过程,那就更弄不明白了。
对于这一部分的东西,徐川讲的很认真,从原理出发,再到如何映射、扭转、扩张群域等方方面面的细节都说到了。
而礼堂中的听众,也听的很认真。
哪怕是已经开始听不懂的那些数学生,都睁大着眼睛紧紧的盯着舞台。
能被导师,或者说能跟随着教授一起来参加这种大型数学报告会的学生,基本都是有志于在数学上更进一步的。
而对于研究数学来说,多听听这种顶级大佬对问题的讲解,比一个人抱着书本教材啃肯定要好很多。
哪怕过程听不懂,但总有些概念和想法是能记录下来的,而这些东西再和自己脑海中的学识结合起来,往往就能给他们带来灵感。
对于有志于在数学上更进一步学生,或者教授来说,这种重大猜想的证明报告会是不可错过的东西。
我喜欢你对不起,我们还小,现在的任务是学习。日常温馨正能量三观正平而不淡智商在线...
自幼被一个神秘老头当成超级医生培养的孤儿叶修,为了躲避神秘势力的追杀,积蓄力量复仇,回到华夏国,进入燕京城郊区一个小医院成为了一个普通医生,想要低调平静地过日子,却接连遇到各式美女,令到生活陷入一个又一个艳遇和艳遇带来的漩涡之中...
捡漏鉴宝,全凭经验,林凡却选择走捷径!救命钱被坑,还遭遇女朋友背叛,林凡走投无路之际,获得能鉴宝金手指。从此他步步为营,脚踩仇人,拳打奸商,混的风生水起。青铜青花,翡翠美玉,金石字画,古玩收藏,天下奇珍,尽在手中。...
老兵朱高远,穿越成为吊死煤山的崇祯皇帝。凭借熟知的历史知识及高超的战术指挥能力,率领千余残部成功的从朝阳门溃围而出。继而出人意料转进燕山,躲过流贼大军追剿。继而设计兼并了吴三桂派去劫驾的一千夷丁。一片石大战爆发后,又率领两千明军长驱南下。流贼惨败退出北京,建奴南下,朱高远凭借着结硬寨打呆仗的战术死守黄淮防线。...
走一步,看两部,谋三步,在步步惊心的官场,如何披荆斩棘,红颜相伴,看一个亦步亦趋的基层青年,如何一步步打造属于自己的辉煌...
2002年有三件大事,第一件是上海获得了世界博览会的举办权,第二件事是事业单位机构改革,第三件事是陆渐红失恋了。...