手机浏览器扫描二维码访问
而正规族是指具有某种收敛性质的函数族,定义为:“在一个区域D的一个全纯函数族F称为在D内为正规,如果从F的每一个函数序列fnzn=1,2,…都可以选出一个子序列,使得它在D的内部一致收敛到一个全纯函数或一致发散到∞。”
如今全纯函数正规族及亚纯函数正规族的理论已经发展到很完善的地步,但这个理论中的一个重要研究问题是寻求新的正规性定则。
关于这个问题数学家们其实已经做了许多工作。
例如,与关于整函数的刘维尔定理相应的是以上蒙泰尔的关于一致有界的全纯函数族的定理;亦或者与关于整函数的皮卡定理相应的是以上蒙泰尔的关于有两个例外值的全纯函数族的定则定理。
这些都是基于全纯函数正规族及亚纯函数正规族而做出来。
不过这些成果的范围都相当有限,如何将范围推广到一个区域内具有性质p的全纯函数族都是正规的依旧还是目前困扰数学界的问题。
而现在,谷炳和阿米莉亚或许做到了。
时间一分一秒的过去。
徐川拿着稿纸矗立在办公室中,身边,谷炳、阿米莉亚和蔡鹏都在安静的等待着。
紧张的气氛充斥着整个房间,三人连大气都不敢喘息一下,生怕影响到了什么。
半个小时的时间眨眼就过去了,最后两页稿纸映入了徐川的眼帘中。
“.因为fn是亚纯函数并且在△(Z,δ)={z:|z-z|<δ}内Fn≠0,于是1Fn在△(Z,δ)内全纯,因此1Fn在△﹣(Z,δ2)={z:|z-z|≤δ2}内全纯,并且有max0≤θ≤2π(1Fn(z+δ2eiθ)<2A).”
“.在此小圆内,有{Fn}内闭一致收敛于0,于是F在Z处正规,则F在区域D正轨!”
“由上述表达不难推出,布洛赫猜想成立!”
安静的翻阅完最后两页稿纸,徐川抬起头,脸上带着欣慰的笑容:“很出色的证明,你们所做的工作相当优秀,你们拓展了正规族函数的范围,超越了前人的界限,做出了一份伟大的成果!”
看着眼前的两名学生,他很欣慰,欣慰自己的学生成长了起来。
从18年初,到20年6月,两年半的时间,他们跟着自己学习数学,学习代数簇与群映射工具;继而在此基础上进行拓展,延伸自己的想法,创造属于自己的知识。
如今,是他们收获成果的时候了。
一个世界级的难题,足够证明他们的天赋与努力了。
当然,与此同时,他也很高兴,很开心看见自己为霍奇猜想而构建出来的“代数簇与群映射工具”理论,在新生代的身上展现出了它那顽强的生命。
它并没有止步于霍奇猜想,也没有局限于自己身上,而是就此传承了下去。
星星之火,可以燎原。
徐川相信,终有一天,“代数簇与群映射工具”这份理论,能在数学界绽放出最耀眼的生命。
PS:二更求月票!
本章完
(本书又名90后青春物语)林一身上曾有过许多标签少年做题家九八五废物前大厂码农。一桩意外,让他沿着时光之河逆流而上,穿越十二年光阴。回到梦开始的地方,让所有遗憾通通不再发生!财富权势名声那些不过是我拥有过最微不足道的东西。一段少年事,一曲凡人歌。(第一卷少年自有凌云志,曾许人间第一流已完结...
一觉醒来。洛青舟成了大炎帝国成国府洛家的一个小小庶子。为帮洛家二公子悔婚,洛青舟被迫入赘,娶了一个据说不会说话不会笑的傻子新娘。直到拜完天地,洞房花烛夜后,他才突然发现我家娘子,不对劲!岂止娘子不对劲,就连娘子身边的两个小侍女和秦府其他人,都不对劲!大侍女甜美娇俏爱撩人,声如百灵鸟小侍女冷若冰雪杀气重,出剑...
镇政府门外,一辆黑色帕萨特轿车径直停在了楼门口,从轿车上下来一位年纪大约四十岁上下的妇女来,穿着一身黑色的西装,脚蹬一双曾明瓦亮的黑皮鞋,猛一看,以为是男人呢,仔细一看,脖子里系着一条淡花色的丝巾,才知道是一个干练的女人。...
大学生张青山,被打成瞎子,开除学籍,回归乡里,却得到奇异传承,从此咸鱼翻身,治病救人,种田养殖,带领村民发家致富,顺便跟小姐姐谈谈情说说爱...
同居校园日常狗粮轻松神奇的距离锁定让我和同桌徐菁无法离开彼此。我们被迫开始了同居生活一起相处的过程中,我发现内向的她也有着不为人知的另一面不定闹钟就会睡懒觉郁闷了会鼓嘴喜欢可爱的小动物悄悄写网文并且车速快得飞起。好吧,我承认她是个有点可爱的女孩子但是!我的心里只有学习!笨蛋才会浪费时...
一代神王唐三,重生回到三神之战时期,以图与妻子再续前缘,只是这个斗罗怎么跟他经历过的有亿点点不一样不过这都是小问题,唐三相信以自己的智慧和天赋完全镇得住场子。直到,一个金发骑士姬站在了他的面前。神王是吧?冰清玉洁是吧?创死他!克利希娜!...