手机浏览器扫描二维码访问
从这方面来看,他占据了绝对的优势。
只是,他不知道的是,站在他面前的,到底是一个怎样的怪物。
普林斯顿高等研究院。
一栋别墅中,一个身影匍匐在书房中奋笔疾书。
杂乱的头发,丛生的胡茬,发黑的眼圈,充满血丝的眼睛,无不显示这个身影已经熬了多长时间。
但和熬夜不同的是,桌前的身影眼神异常明亮,精神亢奋,手中的圆珠笔也不断的在稿纸上划动着。
“.”
“D1{u=λu,x∈Ω1,u|Ω1=0;”
“D2{v=v,x∈Ω2,v|Ω2=0;”
“.则特征值问题D1和D2分别有离散谱{λi}i∈N和{i}i∈N.若对每一个i∈N,均有λi=i
“.依据定理[1][6][11],可在平面R2上构建出一对具光滑边界至少为C1光滑的边界的有界连通区域,它们是等谱的,但却非等距同构。”
“由此,可证等谱非等距同构猜想在三维有界区域中成立!”
最后一点落下,徐川手中的圆珠笔放下,盯着书桌上的稿纸长舒了一口气,脸上也扬起了笑容。
眼神落在了旁边的日历,不知不觉间,时间已经到了六月初。
而距离费弗曼当初和他在办公室中发起挑战,时间已经过去了近两个月。
在过去的近两个月中,他借助此前对Weyl-Berry猜想的研究,利用Xu-Weyl-Berry定理中的谱渐近定理,构造出了一个两两不相交的有界开域的集合。
但在利用拉普拉斯算子进行转化构建一对具光滑边界的有界连通区域的时候,他遇到了一些麻烦。
拉普拉斯算子是n维欧几里德空间中的一个二阶微分算子,定义为梯度grad的散度div。
它适应于椭圆型偏微分方程,也可以用来描述物理中的平衡稳定状态,如定常状态的电磁场、引力场和反应扩散现象等。
这是解决等谱问题的关键,但它在特征值的计算方面无法构建出的稳定的闭Willmore超曲面,也无法计算出常平均曲率。
这一度让他苦恼不已。
幸运的是,通过针对等谱问题与偏微分方程相关文献方面的搜索浏览,他找到了一个适合的补救办法。
保Hamilton系统辛结构的辛几何算法、保李群微分方程的李群方法。
这两种于上个世纪日不落国数学家提出的算法,能长时间精确模拟微分方程的变化,且能近似保持微分方程动量和能量守恒特性。
而这两个特性刚好可以应用到他的数学计算中,能恰到好处的填补上最后一块漏洞,让他完成最后的构建。
盯着稿纸上的答案,徐川脸上扬起了笑容。
亲爱的,该吃药了!美丽纯洁的圣女,端来了治疗伤势的药剂。在这一天,他用双眼看到背叛,用灵魂体验到绝望从这一天起,勇者已死,有事烧纸!...
认识了小半年的美女邻居突然问他要不要在一起刘信安思考了短暂的几秒后笑着点头可几天后,她却突然消失之后又突然在电视机里出现刘信安感情我那喜欢白给的女朋友还是个大明星?...
若人生不止一次,吾必当君临万界。洪武十年,朱元璋通过人生模拟器,来到明朝末年崇祯十五年的时空。当他翻开史书,看到朱棣篡位的时候,他忍不住皱起了眉头。看到大明战神一战葬送百万大军,他的脸色变得有些阴沉。而当他看到崇祯年间农民起义遍地,大明江山危在旦夕之后彻底坐不住了。一群不肖子孙,都给咱滚一边去。什么后金,什么闯王,...
误把属性点全点到了掉宝率上后,萧世发现自己每次击杀,都会掉落一件物品。拍死一只蚊子,掉出了一枚丹药。斩杀一头恶灵,掉出了一本秘籍。砍死一个武者,掉出了对方的修炼心得。...
穿书爆笑沙雕老六们不说自己有读心术团宠没素质前期疯癫文学he殷娇穿书十年,终于在某一天,觉醒了她穿到一本可歌可泣的爱情故事里,男女主之间的故事一千多章,全员没嘴是狗听了都摇头的程度好消息女主是她姐,结局he坏消息她家被抄了,全死光光了从此,殷娇为了改变书里的结局可谓是绞尽脑汁煞费苦心片段一失踪多年的女主长姐回家,殷娇带领一众人给足了自己姐姐排面我为我姐举大各位书友要是觉得炮灰觉醒,一群老六偷听我心声还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
2002年有三件大事,第一件是上海获得了世界博览会的举办权,第二件事是事业单位机构改革,第三件事是陆渐红失恋了。陆渐红经过调岗,要离开熟悉的家乡小镇。...