手机浏览器扫描二维码访问
简单的来说,可以理解为航天飞机在返程时,温度最高的并非航天飞机本身,而是航天飞机头部处产生的‘激波锥’。
而‘气动加热’也主要由激波前沿和前方的静态空气之间的压缩和摩擦产生。
根据这一理论,亨利·艾伦认为如果航天器表面和激波前沿保持一定的距离,既可以大幅度的降低航天器表面的摩擦温度。
通过这一想法,亨利·艾伦设计出来了钝形的航天器头部,并通过实验和最终的论证,确定了这一理论有效果。
这就是为什么目前各国研究的宇宙飞船、航天飞机、洲际导弹的头部都采用钝头锥体的原因。
因为航天器的钝形头部可以有效地在减速过程中,在艏部推出一个宽大和强烈的激波,并使波前锋远离艏部和周围,就像平头的驳船船首推开的波浪一样。
而这些天来,徐川一直都在搜索翻阅相关的资料和论文,思索着如何进一步的改进亨利·艾伦教授的激波锥理论。
相对比传统的隔热、散热、耐热等材料和技术来看,激波锥理论这是他目前最看好的一条路线。
这是航天飞机极高的速度决定的。
在日常的生活和大部分人所学过的物理中,如果要降低气动阻力,以减少气动加热,那么应该让物体的体积尽量的小。
因为当物体的体积变小时,与空气摩擦面积也将减小。因此,在强调速度和效率的领域中,通常会选择尽可能小的物体设计。
但在航天器上,这一理论是失效的,尤其是在返回再入大气层的过程中,航天器极高的速度使气动加热的升温速度太快,尖锐的头部对减小气动加热的作用微乎其微。
而头锥在时间和空间上受到高度集中的热负荷,根本没有时间散热,将很快被烧毁。
传统的耐热材料或隔热、散热、导热技术只能略微推迟被烧毁的时机,但不能从根本上改变被烧毁的结局。
而激波锥这条路线,更适合极高速度的航天飞机。
办公室中,徐川思索着激波锥相关的理论。
虽然说亨利·艾伦教授的激波锥理论为航天器的钝形头部带来了一定的优化办法,但这个问题依旧存在,且最为核心的数学理论并未解决。
书桌后,思索了一会后,他从抽屉中摸出来了一叠草稿纸,沉吟了一会后划动了手中的圆珠笔。
【∑i=1·xiHφφxi=0】
这是超音速扰流问题的方程组。
简单的来说,当一个飞行体在空气中以超音速的速度飞行时,一般在飞行体前方就会产生一个激波。按相对运动的观点也可理解为,当一个超音速气流越过一个固定物体时,由于物体的阻绕,在物体前方会形成一个激波。
也就是之前所说的航天器头部的激波锥,这个激波锥的形成,将大大改变气流的状态,从而改变物体受力的情况。
研究这种‘超音速气流’受固定物体阻绕后所产生的激波面的位置,以及波后的流场就称为‘超音速绕流’问题。
如果用数学公式来进行表示,一般在空气动力学中通常会使用Euler方程或okes方程来描写流动。
其在超音速区域中为双曲型方程,而在亚音速区域中为椭圆型方程。
而对这个方程进行研究,对于现代高速飞行技术的发展,超音速扰流问题方程组的解是至关重要的。
但遗憾的是,由于流场内流体速度的分布是未知的,所以从双曲型方程变化到椭圆型方程的变型线也是未知的,再加上流体运动方程是非线性的
各种复杂的因素累积起来,导致数学家们在研究这个方程组,在数学分析的处理上时,会涉及非线性、混合型、自由边界、整体解等等在偏微分方程理论中普遍认为是最困难的因素。
所以是对于钝头物体超音速绕流问题,由于方程的变型不可避免,至今无论是关于解的存在性、稳定性或是关于解的结构等都缺乏数学理论已严格证明的结果。
其难度虽然没有NS方程和欧拉方程高,但数学界对其至今没有多大的研究进展足以证明了它的困难。
落魄的皇朝储君,得始皇绝学,承龙神血脉,一朝蜕变!以身为炉,意志为火,融合奇珍异铁神兵宝刃,成就无上肉身。纵横天地唯我尊,宇宙星空谁能敌?高歌猛进,踏天而行!吾之意志,浩瀚磅礴,吾之战力,盖世无双!我名林寒,古今第一战皇!...
宝可梦复苏了?不怕!由我这个掌握妖精圣剑的王者,用锐不可当的剑光开辟新的世界。训练家大会上蒜头蛤蟆与光头王八针锋相对,华丽大赛上美纳斯和迷你龙争奇斗艳,大胃王比赛卡比兽和莫鲁贝可互不相让,厨神争霸呆呆兽和大葱鸭走火入魔差点把自己当做食材烹饪宝可梦是最棒哒!最强宝可梦教父夏天...
瑞根晚明红楼半架空历史官场养成文,绝对够味!大周永隆二年。盛世隐忧。四王八公鲜花着锦,文臣武将烈火烹油。内有南北文武党争不休,外有九边海疆虏寇虎视。这是一个最好的时代,也是一个最坏的时代。关键在于你身处其中时,该如何把握。勇猛精进,志愿无倦,且看我如何定风流,挽天倾!历史官场养成文,兄弟们请多支持。瑞根铁杆书友群...
2002年有三件大事,第一件是上海获得了世界博览会的举办权,第二件事是事业单位机构改革,第三件事是陆渐红失恋了。陆渐红经过调岗,要离开熟悉的家乡小镇。...
(本书又名90后青春物语)林一身上曾有过许多标签少年做题家九八五废物前大厂码农。一桩意外,让他沿着时光之河逆流而上,穿越十二年光阴。回到梦开始的地方,让所有遗憾通通不再发生!财富权势名声那些不过是我拥有过最微不足道的东西。一段少年事,一曲凡人歌。(第一卷少年自有凌云志,曾许人间第一流已完结...
穿书爆笑沙雕老六们不说自己有读心术团宠没素质前期疯癫文学he殷娇穿书十年,终于在某一天,觉醒了她穿到一本可歌可泣的爱情故事里,男女主之间的故事一千多章,全员没嘴是狗听了都摇头的程度好消息女主是她姐,结局he坏消息她家被抄了,全死光光了从此,殷娇为了改变书里的结局可谓是绞尽脑汁煞费苦心片段一失踪多年的女主长姐回家,殷娇带领一众人给足了自己姐姐排面我为我姐举大各位书友要是觉得殷娇龙青渊还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...