手机浏览器扫描二维码访问
“徐,你会尝试一下往数论方向发展吗?”
气氛微微沉默了一下后,阿图尔·阿维拉教授抬头看向了徐川。
这个数学界史上最年轻的天才,如果往数论方向发展的话,说不定有机会在素数这个领域摘下一颗硕大的果实?
他不敢说肯定,毕竟这种事情谁又能确定呢。
阿图尔·阿维拉很想看到哥德巴赫猜想被证实的那天,但又不希望眼前这个数学界的新星一头扎进去数年甚至是数十年没有做出成绩。
素数发展了千年,无数的数学家前仆后继的冲进了这个巨大的深坑中,虽然证明了不少的猜想和解决了不少的问题。
但从始至终,最难的那些问题就没有被解决过。
甚至,都看不到解决的希望。
但徐川如果继续在谱理论、泛函分析、狄利克雷函数深造下去,不敢说一定能做出比Weyl-Berry猜想更大的贡献,但他肯定能在这些领域进一步的拓展边界,扩大数学范围。
可转入数论的话,就不确定了。
不是每一个天才都是陶哲轩的,目前来看,徐川的数学天赋的确比陶哲轩更高,但跨领域后又会如何,谁也不知道。
徐川没有给阿维拉确切的答案,在过去的一年的时间中,他的确看了不少的数论相关的书籍,但数论并不在他后续的学习研究安排中。
他更倾向于能实际应用,解决物理问题的函数与分析,而数论主要研究整数的性质,算是纯粹数学。
当然,数学发展到今天,也无法说任何一个数学领域都是纯粹的数学,它总能和其他领域挂钩起来。
就比如在统计力学中,配分函数是研究的基本数学对象;而在素数分布的解析理论中,zeta函数是基本对象。
因此,这种对zeta函数作为配分函数的非正统解释指出了素数分布和物理学这一分支之间可能存在的具有根本意义的联系。
只不过目前而言,将数论应用到物理领域上还比较空缺,远没有数学分析,函数变换,数学模型这些领域广泛。
所以徐川并不是很倾向于向纯粹数论这块领域投入大量的精力和时间。
但研究学习一下数论是肯定的。
因为数论也不单单是纯粹数论,还有解析数论、代数数论、几何数论、计算数论、算术代数几何等各种分支。
这些分支都是从纯粹数论,也就是初等数论上结合其他数学延伸出来的。
比如解析数论就是借助微积分及复分析(即复变函数)来研究关于整数问题的数论。
今天晚上他和阿维拉教授聊的这些东西,就和解析数论有一定的关系,
因为解析数论方法除了圆法、筛法等等之外,也包括和椭圆曲线相关的模形式理论等等。此后又发展到自守形式理论,从而和表示论联系起来。
所以有一定的数论基础,对于其他的数学学习还是有很大的帮助的。
本章完
落魄的皇朝储君,得始皇绝学,承龙神血脉,一朝蜕变!以身为炉,意志为火,融合奇珍异铁神兵宝刃,成就无上肉身。纵横天地唯我尊,宇宙星空谁能敌?高歌猛进,踏天而行!吾之意志,浩瀚磅礴,吾之战力,盖世无双!我名林寒,古今第一战皇!...
宝可梦复苏了?不怕!由我这个掌握妖精圣剑的王者,用锐不可当的剑光开辟新的世界。训练家大会上蒜头蛤蟆与光头王八针锋相对,华丽大赛上美纳斯和迷你龙争奇斗艳,大胃王比赛卡比兽和莫鲁贝可互不相让,厨神争霸呆呆兽和大葱鸭走火入魔差点把自己当做食材烹饪宝可梦是最棒哒!最强宝可梦教父夏天...
瑞根晚明红楼半架空历史官场养成文,绝对够味!大周永隆二年。盛世隐忧。四王八公鲜花着锦,文臣武将烈火烹油。内有南北文武党争不休,外有九边海疆虏寇虎视。这是一个最好的时代,也是一个最坏的时代。关键在于你身处其中时,该如何把握。勇猛精进,志愿无倦,且看我如何定风流,挽天倾!历史官场养成文,兄弟们请多支持。瑞根铁杆书友群...
2002年有三件大事,第一件是上海获得了世界博览会的举办权,第二件事是事业单位机构改革,第三件事是陆渐红失恋了。陆渐红经过调岗,要离开熟悉的家乡小镇。...
(本书又名90后青春物语)林一身上曾有过许多标签少年做题家九八五废物前大厂码农。一桩意外,让他沿着时光之河逆流而上,穿越十二年光阴。回到梦开始的地方,让所有遗憾通通不再发生!财富权势名声那些不过是我拥有过最微不足道的东西。一段少年事,一曲凡人歌。(第一卷少年自有凌云志,曾许人间第一流已完结...
穿书爆笑沙雕老六们不说自己有读心术团宠没素质前期疯癫文学he殷娇穿书十年,终于在某一天,觉醒了她穿到一本可歌可泣的爱情故事里,男女主之间的故事一千多章,全员没嘴是狗听了都摇头的程度好消息女主是她姐,结局he坏消息她家被抄了,全死光光了从此,殷娇为了改变书里的结局可谓是绞尽脑汁煞费苦心片段一失踪多年的女主长姐回家,殷娇带领一众人给足了自己姐姐排面我为我姐举大各位书友要是觉得殷娇龙青渊还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...