手机浏览器扫描二维码访问
老实说,他很期待!
只不过,可惜了他这位好友了。
从当初与徐川开始合作研究NS方程开始,他始终就慢了一步,从两项阶段性成果,再到如今的最后一步。
如果换做对手是其他人,他这位好友或许还能一战。
但遇到他那个学生
想着,德利涅忍不住摇了摇头。
或许,费弗曼再年轻个三四十岁还有机会拼一下,但现在,恐怕已经没机会了。
另一边,华国,金陵。
徐川并没有理会网上的这些新闻消息,即便是有媒体记者想要采访他也都被郑海拦了下来。
自从教室回来后,他就将自己关到了书房,开始全力研究NS方程的最后一步。
老实说,他从未想过对NS方程的研究这么快就会到来。
因为在此之前,他差不多已经将利用柯尔莫果洛夫的K4理论证明NS方程阶段性成果的道路走到了尽头。
当黏性系数ν趋于零时,okes方程初边值问题的解,在流体运动区域的内部,是否趋向于相应的理想流体的解,流体边界层问题的如刻画,以及在三维无限空间下,流体流速越来越快,进而速度趋向于无穷大,超乎了现实中的常理是最后的问题。
这一步既是最后一步也是最难的一部分。
在没有找到正确的答案前,三维不可压缩okes方程光滑解是否存在依旧是一个谜题,谁也不知道湍流的发散最终是否会归于平静。
否则当初在费弗曼邀请他时,也不会就直接了当的拒绝了。
只不过徐川没想到,在时间仅仅过去了五六个月,新的灵感与道路来的如此之快。
一趟基础数学课,另辟蹊径般的带给了他一条全新的思路。
如果说,将每一个流体散发微流单元都看做是一个数学值,那么利用微元流体数学他可以构建一个容纳这些数字的集合。
而在庞加莱猜想或者说庞加莱定理中,任何一个单连通的,闭的三维流形一定会同胚于一个三维的球面。
简单的说,就是一个闭的三维流形就是一个有边界的三维空间;而单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点。
或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维球面。
利用微元流体,他构建了一个数学工具,将NS方程中的流体扩散全都囊括在了集合中,再利用Ricci流形来展开流体拓扑,构造几何结构,将其从不规则的流形变成规则的流形。
这一条道路,跨越了最基础的微元流体、复杂的扩散流体、究极的湍流流体,最终成功的构建出了一份全新的数学工具。
一条全新的道路,一份全新的工具,是他面对NS方程最后一步交出来的答卷。
这和之前利用数学和实践物理来攀登NS方程完全不同。
这一次,他走的是纯粹数学的道路。
弯弯曲曲的,攀登了半天,又回到了原点。
(本书又名90后青春物语)林一身上曾有过许多标签少年做题家九八五废物前大厂码农。一桩意外,让他沿着时光之河逆流而上,穿越十二年光阴。回到梦开始的地方,让所有遗憾通通不再发生!财富权势名声那些不过是我拥有过最微不足道的东西。一段少年事,一曲凡人歌。(第一卷少年自有凌云志,曾许人间第一流已完结...
一觉醒来。洛青舟成了大炎帝国成国府洛家的一个小小庶子。为帮洛家二公子悔婚,洛青舟被迫入赘,娶了一个据说不会说话不会笑的傻子新娘。直到拜完天地,洞房花烛夜后,他才突然发现我家娘子,不对劲!岂止娘子不对劲,就连娘子身边的两个小侍女和秦府其他人,都不对劲!大侍女甜美娇俏爱撩人,声如百灵鸟小侍女冷若冰雪杀气重,出剑...
镇政府门外,一辆黑色帕萨特轿车径直停在了楼门口,从轿车上下来一位年纪大约四十岁上下的妇女来,穿着一身黑色的西装,脚蹬一双曾明瓦亮的黑皮鞋,猛一看,以为是男人呢,仔细一看,脖子里系着一条淡花色的丝巾,才知道是一个干练的女人。...
大学生张青山,被打成瞎子,开除学籍,回归乡里,却得到奇异传承,从此咸鱼翻身,治病救人,种田养殖,带领村民发家致富,顺便跟小姐姐谈谈情说说爱...
同居校园日常狗粮轻松神奇的距离锁定让我和同桌徐菁无法离开彼此。我们被迫开始了同居生活一起相处的过程中,我发现内向的她也有着不为人知的另一面不定闹钟就会睡懒觉郁闷了会鼓嘴喜欢可爱的小动物悄悄写网文并且车速快得飞起。好吧,我承认她是个有点可爱的女孩子但是!我的心里只有学习!笨蛋才会浪费时...
一代神王唐三,重生回到三神之战时期,以图与妻子再续前缘,只是这个斗罗怎么跟他经历过的有亿点点不一样不过这都是小问题,唐三相信以自己的智慧和天赋完全镇得住场子。直到,一个金发骑士姬站在了他的面前。神王是吧?冰清玉洁是吧?创死他!克利希娜!...